Tuesday, December 30, 2014

Testing GPS Watch TomTom Runner Cardio

I bought a new TomTom Runner Cardio GPS watch about few months a go. I've found it very helpful especially as it can detect heart rate without strap, or strapless heart rate monitor (HRM).

easy to read when running, even without glasses
strapless integrated HRM, using light sensor
running zone: Heart Rate, Pace, Speed,
simple functional
race against previous run
good looking, fashionable
can be used as everyday watch
audible alert, vibration alert

no ambient temperature
no barometric / atmospheric pressure

Temperature and air mass or air pressure can affect runner performance. As air temperature rise, runner will sweat more and reducing water volume in blood, and the heart will work harder to pump more blood, so your heart rate will be higher. Lower atmospheric pressure will reduce oxygen, thus heart rate will be higher. Higher heart rate means higher effort to run, more tired, and more risk for heart disease.

I've found that running route with less air pollutant (such as vehicle smoke) and plenty plants, will lower hear rate as easier to get oxygen. Drink water also help to lower heart rate. It is about 1 (one) up to 2 (two) table spoon of water at about every 500 meters. Or it is about 500 ml (medium bottle) for one hour running. Hotter ambient temperature means more drink. That is why I like to run when cloudy and a bit raining.

Below photo shows TomTom Runner Cardio with docking, ready to connect with computer to recharge and   upload data. It can be recharged also with any charger that has USB connection.

Below is a display from TomTom My Sport webpage, showing hear rate and speed. Elevation also can be shown, but the chart can have only 2 graphs shown at once. It shows also a map of running route I've taken and has detail where was maximum speed and where was maximum heart rate.

Before I purchase this TomTom Runner Cardio, I have already compared it to Garmin 220, both has about same price. Jakarta price for TomTom Runner Cardio is about US$ 308, while Garmin price is about US$ 292 including heart rate chest strap. 

Another option is Garmin Fenix, Jakarta price is about US$ 404 including heart rate chest strap. Garmin Fenix has temperature and barometric measurement, but the price is way too high relative too TomTom and still using chest strap technology.

The last option is Garmin Forerunner 620, it has VO2 max calculator. VO2 max is maximum oxygen consumption and it reflects your aerobic physical fitness. Jakarta price of this Garmin Forerunner is about US$ 375. But it still using strap technology for heart rate sensor. And there are many internet sites available to calculate your VO2 max based on your running distance, time, heart rate, body weight, and of course your sex. Hopefully in the future TomTom Mysport website has VO2 max calculation based on running result uploaded from the watch, and suggest the runner what to do for the next training based on VO2 max calculation result.  

As I don't like using chest strap to monitor my heart rate while running, so then I have decided to buy TomTom Runner Cardio.

Some people comment that chest strap heart rate monitor is better then optical LED like the one used by TomTom. But so far I have found no problem with my optical heart rate sensor, possibly as I fit my watch tight enough on my wrist like TomTom manual describes. But in case that optical system failed, this TomTom Cardio watch can use an external heart rate chest strap also, and compatible with many chest straps that available in the market.

Below is my record of fun run at Ragunan Zoo. Thick vegetation doesn't distract GPS satelite reception. Fun run at Ragunan zoo while watching animals and enjoy rich oxygen and cool air produced by thick plantation. More oxygen means lower heart rate (beats per minute), less risk for heart disease. This is a long distance run (10.49 km) with less effort and entertaining, with total time 1:37:55.

Thick vegetation at Ragunan was helping me to reduce my heart rate as plenty oxygen available in the atmosphere. And Ragunan zoo ticket price is very cheap, only about US$ 0.4/person plus US$ 0.6 flat rate for car park.

As we can see on chart, correlation between elevation to my heart rate. My heart rate was lower when I descending, and heart rate higher when climbing hill. I was using endure zone heart rate setting menu, and TomTom vibration alert and audible alert remained me to limit my heart rate within this zone by adjusting my pace. Minimum elevation is about 39 meters, and maximum elevation is 57 meters above sea level.

Endure heart rate zone is about 70 - 80% of maximum heart rate. This is the aerobic zone, it will improve your cardiovascular and respiratory system and increase the size and strength of your heart. TomTom Runner Cardio has capability to calculate your specific heart rate zone with input data such as: gender, age, weight, height.

There are five heart rate zones for training intensity:
1. Easy zone, 40-60% of your maximum heart rate: usually for warm-up and cool down, 85% of calories burned in this zone are fats, 10% carbohydrates, and 5 % protein. You can achieve it by walking fast, do it every day for at least 1 hour.

2. Fat Burn zone, 60-70% maximum: moderate tempo training, great for weight loss, fat calories is still 85%, same as above.

3. Endure or aerobic zone, 70-80% maximum: moderate to high tempo training to improve your lung and heart capacity, More calories are burned with 50% from fat, 50% from carbohydrates, and less then 1% from protein. This zone is suitable for long distance run training, this zone is the most preferable for training. Can be done almost everyday with about 30 - 60 minutes per session.

4. Speed  zone, 80-90% maximum: high tempo training to improve your speed and fitness, This is a high intensity zone burning more calories, 15 % from fat, 85% carbohydrates, less than 1% protein.

5. Sprint zone, 90-100% maximum: mostly used as part of interval training, only for short period, only do it if you are in very good shape and have been cleared by a physician to do so. Calories are from: 90% carbohydrates, 10% fat, less than 1% protein. Interval training is an exercise with maximum speed run in short distance, combined with jogging for warming up and cooling down, that combination is done repeatedly.

Uji Coba Arloji GPS TomTom Runner Cardio

Saya membeli TomTom Runner Cardio baru sekitar beberapa bulan lalu. Dan ternyata arloji GPS ini sangat membantu terutama karena dapat mendeteksi denyut jantung tanpa sabuk di dada, atau Strapless Heart Rate Monitor (HRM).

mudah dibaca ketika sedang berlari, bahkan tanpa kacamata
strapless HRM terintegrasi, menggunakan sensor cahaya
setelan zona berlari: Heart Rate, Kelajuan (Pace = menit/kilometer), Kecepatan (Speed = kilometer/jam),
sederhana dan fungsional
berpacu dengan catatan lari sebelumnya
bagus desainnya, fashionable
dapat digunakan sebagai jam tangan sehari-hari
suara peringatan dan getaran

tidak ada pengukur suhu lingkungan
tidak ada pengukur tekanan atmosfer / barometer

Suhu dan massa udara atau tekanan udara dapat mempengaruhi kinerja pelari. Saat terjadi kenaikan suhu udara, pelari akan berkeringat lebih banyak dan mengurangi volume air dalam darah, dan jantung akan bekerja lebih keras untuk memompa lebih banyak darah, sehingga denyut jantung Anda akan lebih tinggi. Tekanan atmosfer yang rendah akan mengurangi oksigen, sehingga denyut jantung akan lebih tinggi. Denyut jantung yang lebih tinggi berarti Anda berusaha yang lebih keras untuk berlari, lebih lelah, dan lebih tinggi risiko terkena penyakit jantung.

Saya menemukan bahwa berlari di tempat yang sedikit polusi udara (seperti asap kendaraan) dan banyak tanaman, akan menurunkan frekuensi denyut jantung karena mudah mendapatkan oksigen. Minum air juga membantu menurunkan frekuensi denyut jantung. Saat berlari perlu meminum sekitar 1 (satu) sampai 2 (dua) sendok makan air di setiap 500 meter. Atau sekitar 500 ml (botol ukuran medium) untuk 1 (satu) jam berlari. Suhu lingkungan lebih panas berarti harus lebih banyak minum. Itulah sebabnya saya suka berlari di saat mendung dan sedikit hujan gerimis.

Pada foto paling atas tampa TomTom Runner Cardio dengan docking, siap untuk terhubung dengan komputer untuk mengisi ulang dan meng-upload data. Jam tangan ini dapat diisi-ulang juga dengan pengisi daya yang memiliki koneksi USB.

Gambar kedua adalah tampilan dari halaman website TomTom Mysport, menunjukkan tingkat denyut jantung dan kecepatan. Elevasi tanah atau naik turun bukit juga dapat ditampilkan, tetapi tampilan hanya dapat menampilkan 2 grafik sekaligus. Website juga menampilkan peta rute lari saya dan menunjukkan detil dimana kecepatan maksimum dan dimana detak jantung maksimum.

Sebelum saya membeli TomTom Runner Cardio ini, saya sudah membandingkannya dengan Garmin 220, keduanya memiliki harga yang hampir sama. Harga Jakarta untuk TomTom Runner Cardio adalah sekitar 3,7 juta rupiah, sedangkan harga Garmin adalah sekitar 3,5 juta rupiah sudah termasuk sabuk dada sensor denyut jantung (HRM strap).

Pilihan lain adalah Garmin Fenix, harga Jakarta adalah sekitar 4.85 juta rupiah termasuk sabuk dada sensor denyut jantung. Garmin Fenix memiliki pengukur suhu dan barometer, tapi harganya relatif terlalu tinggi dibanding TomTom dan masih menggunakan teknologi sabuk dada.

Opsi terakhir adalah Garmin Forerunner 620, memiliki VO2 max kalkulator. VO2 max adalah konsumsi oksigen maksimal dan mencerminkan kebugaran aerobik tubuh Anda. Harga Jakarta Garmin Forerunner ini adalah sekitar 4,5 juta rupiah. Tapi itu masih menggunakan teknologi sabuk dada untuk sensor denyut jantung. Ada banyak situs internet yang dapat menghitung VO2 max Anda berdasarkan jarak lari Anda, waktu tempuh, denyut jantung, berat badan, dan tentu saja jenis kelamin Anda. Mudah-mudahan dalam situs TomTom Mysport nantinya memiliki kalkulator VO2 max berdasarkan menjalankan hasil upload dari jam tangan, dan memberi saran kepada pelari apa yang harus dilakukan untuk latihan berikutnya berdasarkan hasil perhitungan VO2 max tersebut.

Karena saya tidak suka menggunakan sabuk dada untuk memantau detak jantung sambil berlari, jadi saya memutuskan untuk membeli TomTom Runner Cardio.

Beberapa orang di internet berkomentar bahwa sensor sabuk dada lebih baik daripada sensor optik LED seperti yang digunakan oleh TomTom. Tapi sejauh ini belum ada masalah dengan sensor detak jantung optik saya, mungkin karena saya memasang arloji dengan cukup ketat di pergelangan tangan mengikuti panduan TomTom. Jikapun sistem optik gagal berfungsi, arloji TomTom Cardio ini dapat juga menggunakan sabuk dada sebagai sensor external untuk memonitor denyut jantung, dan kompatibel dengan banyak sabuk dada yang tersedia di pasaran.

Gambar ketiga adalah catatan lari santai saya di Kebun Binatang Ragunan. Vegetasi tebal tidak berpengaruh terhadap penerimaan satelit GPS. Lari santai di Kebun Binatang Ragunan sambil menonton hewan dan menikmati udara sejuk yang kaya oksigen yang dihasilkan oleh tanaman lebat. Banyak oksigen berarti denyut jantung yang lebih rendah, mengurangi risiko penyakit jantung. Lari ini berjarak cukup jauh (10,49 km) dengan sedikit usaha dan menghibur, dengan total waktu tempuh 1:37:55.

Vegetasi tebal di Ragunan membantu saya untuk mengurangi denyut jantung karena banyak oksigen yang di udara. Dan harga tiket Kebun Binatang Ragunan cukup murah hanya sekitar 4500 rupiah / orang ditambah 6500 rupiah untuk parkir mobil sekali masuk tanpa hitungan jam (flat rate).

Seperti yang bisa kita lihat pada grafik, korelasi antara elevasi dengan detak jantung saya. Denyut jantung saya terlihat lebih rendah ketika saya menuruni bukit, dan detak jantung yang lebih tinggi saat mendaki bukit. Saya menggunakan zona denyut jantung endure (ketahanan), dan arloji TomTom akan bergetar dan berbunyi jika saya berlari diluar zona tersebut. Jadi saya mengatur kecepatan berlari agar denyut jantung selalu dalam zona endure. Elevasi minimum adalah sekitar 39 meter, dan ketinggian maksimum adalah 57 meter di atas permukaan laut.

Zona denyut jantung endure adalah sekitar 70 - 80% dari detak jantung maksimum. Ini adalah zona aerobik, akan meningkatkan sistem kardiovaskular dan pernapasan Anda dan meningkatkan ukuran dan kekuatan jantung Anda. TomTom Runner Cardio memiliki kemampuan untuk menghitung zona detak jantung dengan input data: jenis kelamin, usia, berat badan, tinggi badan.

Ada lima zona detak jantung untuk intensitas pelatihan:

1. zona Ringan, 40-60% dari detak jantung maksimum Anda: biasanya untuk pemanasan dan pendinginan, 85% dari kalori yang terbakar di zona ini adalah lemak, 10% karbohidrat, dan 5% protein. Anda dapat mencapainya dengan berjalan cepat, lakukan setiap hari selama setidaknya 1 jam.

2. zona Membakar Lemak, 60-70% maksimum: pelatihan tempo sedang, baik untuk menurunkan berat badan, kalori dari lemak masih 85%, sama seperti di atas.

3. zona Ketahanan (endure) atau zona aerobik, 70-80% maksimum: untuk pelatihan tempo moderat untuk meningkatkan kapasitas paru-paru dan jantung Anda. Kalori terbakar dengan 50% dari lemak, 50% dari karbohidrat, dan kurang dari 1% dari protein. Zona ini cocok untuk jangka pelatihan jarak jauh, zona ini adalah yang paling disukai untuk pelatihan. Bisa dilakukan hampir setiap hari dengan sekitar 30 - 60 menit per sesi.

4. zona Kecepatan, 80-90% maksimum: pelatihan tempo tinggi untuk meningkatkan kecepatan Anda dan kebugaran, ini adalah zona intensitas tinggi membakar lebih banyak kalori, 15% dari lemak, 85% karbohidrat, kurang dari 1% protein.

5. zona Sprint, 90-100% maksimum: banyak digunakan sebagai bagian dari latihan dengan interval (lari kecepatan maximal dipadu dengan lari santai atau jogging), hanya untuk jarak pendek, hanya dilakukan jika Anda berada dalam kondisi yang sangat baik dan telah diizinkan oleh dokter untuk melakukannya. Kalori berasal dari: 90% karbohidrat, 10% lemak, kurang dari 1% protein. Latihan dengan interval (interval training) adalah lari kecepatan maximal dengan jarak pendek, dipadu dengan lari santai atau jogging untuk pemanasan dan pendinginan, paduan tersebut dilakukan berulang-ulang.

Saturday, December 20, 2014

Removing Seized Ball Joint With Jack And Screwdriver

On a vehicle, ball joint is a spherical bearing which can be rotated to almost all directions. Ball joints are installed on front wheel suspension to allow wheel to turn left and right, and allow suspension to move up and down.

Ball joint is replaced if it has been worn and causing too much end play. It can be felt as too much free movement on the steering wheel, and it could be more than 1 cm free play, when the steering wheel is rotated.  The occurrence of too much free play on the wheel can also be caused by the worn tie rod joint, in addition to the worn of ball joint, and can be also by wheel bearing worn.

To ensure which part is worn, we need to jack the front wheel, and then shake the wheel by hands to the left-right direction of the vehicle. Check which component has too much end play: ball joint, tie rod, or wheel bearing. Some vehicle specification only allow a maximum end play of 3.18 mm (0.125 inches) as the wheel moved about. In the extreme condition, too much end play will cause wheel loose while driving. Measurements can be done by attaching end play micrometer on the outer lip / largest radius of the wheel.

Worn tie rod usually can be detected as too much end play when wheel is shaken left and right, same direction when vehicle turns left and right

Worn ball joint usually can be seen as too much end play when the wheel is moved inward and outward of the vehicle.

Bad wheel bearing usually looks like worn ball joint, which has end play to all directions : left-right and up-down. Worn bearing will produce a buzzing sound. For sedan with MacPherson strut independent suspension, a worn bearing noise can be heard clearly because the sound waves of bad bearing propagate easily toward cabin. While jeep with leaf spring suspension, usually bearing noise is not too loud even though the wheel bearing has already worn out badly.

Ball joint replacement often faces difficulty in removing seized ball joint stud. Although the nut has been removed, stud oiled, and even beaten with a hammer, but ball joint stud still stuck. The stud could even be damaged because pounded by hammer.

This procedure to remove seized ball joint with the jack, can be applied to MacPherson strut independent suspension that is popularly used on front wheels of sedan like: Toyota, Mitsubishi, Honda, Ford, Daihatsu, and many others.

Jack vehicle on body frame, not on the suspension arm (swing arm), undo the tire. Put a jack stand under vehicle body so that car will be safely hanging without tire, lower the jack from car body. Later that jack will be used to release ball joint stud. If you do not have any jack stand, you can use a spare tire with wooden block on the top. Do not just rely only with jack, because jack is less stable.

In my opinion, a tire with wooden block on the top is safer than a jack stand, especially when applying this technique of releasing ball joint stud as explained in this article. Because tire has wide surface that become the foundation, wooden block has also wide and soft surface to contact with vehicle lower body, making it more stable and less risk damaging the vehicle body. While jack stand has narrower foot and the upper part is also smaller and harder, making it less stable and can damage vehicle body. And of course a tire with wooden block is more economical than a jack stand.

Some wheel design has convex face that is higher (protrude) than tire wall, that wheel convex face will be scratched if it is is touching the floor. As in the photograph, the wheel is facing up to avoid scratched face by the floor.

Undo tie rod pin, loosen the nut, and remove tie rod. Tie rod relatively easier to remove than ball joint. Seized tie rod  can be removed by tracker or by hitting it with a hammer on it's mounting. When hitting tie rod with hammer, make sure blow direction is not the same way of wheel movement when turning right or left, in order to avoid damage to the steering system. The photo shows a tie rod still attached, and we can see there is an extended part of tie rod mounting frame. You can hit that extended frame by hammer in the direction of the red arrow if tie rod stud seized.

On some vehicles ball joint can be removed without removing the tie rod. But considering safety, and because removing the ball joint requires a lot of effort and often have to be hit hard with a hammer. So to avoid steering system damage, tie rod should be removed before removing ball joint. In the video we can see ball joint is still attached, but the pin has been removed. Tie rod in the video had already been removed and repositioned back for safety, but not tightened.

Remove ball joint pin from the nut. Loosen ball joint nut, but do not take it off. Turn the nut to move it to a distance of about 2-5 mm from the locked position. It is for safety when ball joint released, swing arm still can safely hanging. Ball joint nut in the video is still attached, but has been loosened.

When the suspension arm (swing arm) is hanging freely without jack, we can see a narrow gap between swing arm and ball joint stud mounting.

If the swing arm is lifted with a jack, then the gap between the swing arm and ball joint stud mounting will be widened. The higher it is lifted by jack, the greater the gap. When swing arm jack is lowered, then the gap will be narrowed back.

When swing arm is being raised by jack, insert an iron bar in the gap, make sure that iron bar fits perfectly in the gap size. If needed hit that iron rod slowly by hammer in order to squeeze it into the gap. In the video I put a screwdriver in the gap between swing arm and ball joint stud mounting.

I usually use a jack crocodile, appears red on the video. Other hydraulic type jack can do, as long as it is easy to raise and lower.

When raising swing arm by jack, make sure the vehicle body is not floating. Add wooden block under the body, so the body does not slam down when swing arm jack suddenly lowered. Especially if using a hydraulic jack that can quickly lowered.

If ball joint will be reused, such as: when replacing the wheel bearings, repair and replacement clutch and axle on the front wheel drive. Make sure ball joint rubber booth will not damage when inserting the iron rod / screwdriver.

When screwdriver is already tucked steady, lower swing arm jack. The gap between swing arm and ball joint mounting will be narrowed, but because there is a screwdriver tucked in between, then the mounting will be pushed off the ball joint.

If the ball joint has not been released, repeat the above procedure. Carefully hammer stud mounting, when swing arm jack is already lowered and screwdriver is pinched. Ball joint nut may also be hammered on its side. But hammering ball joint nut too hard would bent the stud, and if this happens it will be very difficult to remove the ball joint.

videoIn case ball joint nut is needed to be hammered hardly, then make sure nut position is close to maximum fit but not be tightened, or at least as low as 1 mm from tight position. As the principle of a lever, low positioned nut will be stronger to prevent stud bent when hammered from its side.

On the video, we can hear crackling sound when the jack is lowering, it is the sound of ball joint stud released from its mounting.

If the video can not be accessed on this article, please check to YouTube address:

Saturday, November 22, 2014

Melepas Ball Joint Macet Dengan Dongkrak Dan Obeng

Ball joint pada kendaraan berfungsi seperti sendi peluru,yang mana dapat berputar hampir ke segala arah. Digunakan pada roda depan agar roda dapat berbelok kiri-kanan dan suspensi dapat bergerak naik-turun. 

Ball joint diganti jika sudah terjadi keausan yang menyebabkan kelonggaran (end play) yang besar. Hal ini dapat dirasakan di roda kemudi dimana ada gerakan bebas yang besar, bisa lebih dari 1 cm, saat roda kemudi diputar. Jarak bebas pada setir dalam bahasa sehari-hari sering disebut sebagai: spelling, spelleng, setir pre (free). Terjadinya jarak bebas yang besar pada kemudi juga bisa disebabkan oleh ausnya tie rod, selain oleh ausnya ball joint, dan dapat juga oleh ausnya bearing roda.

Untuk memastikan maka roda depan perlu didongkrak, lalu roda digerak-gerakkan dengan tangan ke arah kiri-kanan kendaraan. Perhatikan apakah kelonggaran terjadi pada ball joint, atau pada tie rod, atau pada bearing. Beberapa spesifikasi kendaraan hanya memperbolehkan kelonggaran maximal 3.18 mm (0.125 inchi) saat roda digerak-gerakkan. Jika terlalu longgar maka beresiko roda lepas saat sedang dikendarai. Pengukuran kelonggaran dapat dilakukan dengan menempelkan micrometer pada bibir terluar / radius terbesar dari velg.

Kelonggaran pada tie rod, biasanya hanya terlihat jika roda digerak-gerakkan kearah membelok, seperti gerakan membelok ke kiri-kanan.

Kelonggaran pada ball joint, biasanya akan terlihat saat roda digerak-gerakkan keatas-bawah, dan gerakan ke arah keluar-dalam atau kiri-kanan kendaraan.

Kelonggaran pada bearing roda, biasanya akan terlihat mirip dengan kelonggaran pada ball joint, yaitu terjadi kelonggaran disemua arah: atas-bawah dan kiri-kanan. Bearing yang aus akan menghasilkan suara dengung. Pada kendaraan sedan dengan suspensi independen jenis MacPherson strut, suara bearing yang aus dapat terdengar jelas karena gelombang suara bearing mudah merambat menuju ruang kabin. Pada kendaraan jip dengan suspensi pegas daun, biasanya suara bearing tidak terlalu terdengar walau roda sudah sangat tinggi kelonggarannya, kadang disebut oblak.

Mengganti ball joint sering menghadapi persoalan sulitnya melepas ball joint yang sudah macet. Walau murnya sudah dilepas, diberi pelumas, dan bahkan sudah dipukul-pukul dengan palu tapi ball joint tetap bandel tidak mau bergerak. Bahkan bisa terjadi kerusakan karena dipukul-pukul palu.

videoProsedur melepas ball joint macet dengan dongkrak ini dapat diterapkan pada suspensi jenis independen seperti suspensi MacPherson strut yang populer digunakan pada roda depan sedan seperti: Toyota, Mitsubishi, Honda, Ford, Daihatsu, dan lain-lain.

Dongkrak kendaraan pada bagian body, bukan pada lengan suspensi (swing arm), lepaskan ban. Pasang ganjal body (jack stand) agar kendaraan aman bergantung tanpa ban, lepaskan dongkrak dari bodi. Nantinya dongkrak tersebut akan digunakan untuk melepas ball joint. Jika anda tidak memiliki jack stand, maka dapat menggunakan ban serap yang dilapisi dengan balok diatasnya untuk menahan bodi. Jangan hanya mengandalkan dongkrak, karena dongkrak kurang stabil.

Menurut saya, menggunakan ban yang diberi balok kayu lebih aman daripada menggunakan jack stand, terutama saat menerapkan teknik melepas ball joint sebagaimana dibahas di artikel ini. Karena ban lebih luas bidangnya yang menjadi landasan, dan balok kayu lebih luas bidangnya yang menyentuh bagian bawah kendaraan, sehingga lebih stabil dan tidak beresiko merusak bodi kendaraan. Sedangkan jack stand kakinya lebih sempit dan bagian atasnya lebih kecil dan keras, sehingga kurang stabil dan dapat membuat penyok bodi. Dan tentu saja ban dengan balok kayu lebih ekonomis daripada harus membeli jack stand.

Beberapa desain velg mempunyai bagian luar atau muka yang cembung dan melampaui bibir ban, sehingga velg bergores jika bagian muka yang cembung ini menyentuh lantai. Seperti pada foto, bagian muka velg menghadap ke atas agar tidak  tergores lantai.

Buka pin tie rod, kendurkan mur tie rod, dan lepaskan tie rod. Tie rod relatif lebih mudah dilepas daripada ball joint. Tie rod yang macet dapat dilepas dengan tracker atau dengan memukul dengan palu pada pegangan tie rod. Hati-hati jika memukul tie rod, pastikan arah pukulan tidak searah gerakan membelok roda, agar tidak terjadi kerusakan pada sistem kemudi. Pada foto tampak tie rod masih terpasang, dan terlihat ada bagian yang memanjang atau berlebih dari rangka yang memegang tie rod. Bagian rangka yang berlebih ini boleh dipukul palu sesuai arah panah merah jika tie rod macet.

Pada beberapa kendaraan melepas ball joint dapat dilakukan tanpa melepas tie rod. Tapi menimbang unsur keselamatan (safety), dan karena melepas ball joint membutuhkan tenaga yang besar dan sering harus dipukul keras dengan palu. Maka agar tidak terjadi kerusakan pada sistem kemudi, maka sebaiknya tie rod dilepas sebelum melepas ball joint. Pada video tampak ball joint masih terpasang, tapi pinnya sudah dilepas. Tie rod pada video sudah lebih dulu dilepas dan diposisikan kembali sebagai pengaman, tanpa mengunci mur tie rod dengan kuat.

Lepaskan pin dari mur ball joint. Kendurkan mur ball joint, tapi tidak melepasnya. Biarkan mur tersebut tetap terpasang dengan jarak sekitar 2-5 mm dari posisi terkunci. Hal ini sebagai pengaman saat ball joint terlepas, maka swing arm masih bisa aman bergantung. Mur ball joint pada video terlihat masih terpasang, tapi sudah dikendurkan.

Saat lengan suspensi (swing arm) bergantung bebas tanpa didongkrak, dapat terlihat adanya celah sempit diantara swing arm dengan pegangan ball joint.

Jika swing arm diangkat dengan dongkrak, maka celah diantara swing arm dengan pegangan ball joint akan melebar. Semakin tinggi didongkrak maka semakin besar celah tersebut. Jika dongkrak swing arm diturunkan maka, maka celah tersebut akan menyempit kembali.

Dengan swing arm yang sedang diangkat dongkrak, selipkan sebatang besi di celah tersebut, pastikan batang besi tersebut pas ukurannya dengan celah, tidak longgar. Bila perlu ketok pelan-pelan dengan palu agar batang besi dapat menyelip di celah. Pada video saya menyelipkan sebatang obeng di celah antara pegangan ball joint dengan swing arm.

Saya biasanya menggunakan dongkrak buaya, tampak pada video berwarna merah, atau dongkrak jenis hidrolik lainnya karena mudah menaikkan dan menurunkannya agar ball joint segera terlepas.

Saat mendongkrak swing arm, pastikan bodi kendaraan tidak melayang karena bodi akan ikut terangkat. Tambahkan balok kayu untuk menahan bodi, agar bodi tidak terbanting saat dongkrak swing arm mendadak diturunkan. Terutama jika menggunakan dongkrak hidrolik yang dapat turun dengan cepat.

Jika ball joint akan digunakan kembali, seperti saat mengganti bearing roda, perbaikan dan penggantian kopling dan as roda pada front wheel drive. Hati-hati saat selipkan obeng agar tidak merusak karet abu ball joint.

Saat obeng terselip mantap, turunkan dongkrak swing arm. Celah diantara pegangan ball joint dan swing arm menyempit, tapi karena ada obeng yang terselip diantaranya, maka pegangan ball joint akan terdorong lepas dari ball joint.

Jika ball joint belum terlepas, ulangi prosedur di atas. Rangka pegangan ball joint boleh diketok palu saat obeng sudah terjepit dan dongkrak swing arm sudah turun tapi ball joint belum lepas. Mur ball joint juga boleh diketuk palu dari samping dengan bantuan kunci pas. Tapi mengetok mur ball joint jangan terlalu keras sampai batang ball joint bengkok, jika ini terjadi maka akan sangat sulit melepas ball joint.

Jika terpaksa mengetuk mur ball joint dengan keras, maka pastikan posisi mur sudah terpasang maximal tapi tidak diketatkan, atau serendah 1 mm dari posisi ketat. Sebagaimana azas pengungkit, mur dengan posisi rendah akan lebih kuat mencegah batang ball joint bengkok saat dipukul dari samping dengan bantuan kunci pas. Sebaliknya posisi mur  yang tinggi akan mudah membuat batang ball joint bengkok saat dipukul dari samping.

 Dalam video terdengar suara berderak saat dongkrak buaya diturunkan, itu adalah suara ball joint macet yang sedang terlepas.

Jika video tidak bisa diakses di artikel ini maka dapat melihat ke YouTube dengan alamat:

Tuesday, November 4, 2014

Paddy Field At Cisaat Sukabumi West Java

This picture of paddy field was taken at Sukaresmi road, Cisaat, Sukabumi, West Java Indonesia. Global Positioning System coordinates -6.9004,106.902 , facing to east. Famous tourist attraction nearby are Situgunung and Selabintana at the base of Mount Gede Pangrango. You can enjoy many services and facilities such as: hotel, conference room, restaurant, swimming pool, outdoor activities, tea walk, flying fox, etcetera.

Photo sawah ini  diambil di jalan Sukaresmi, Cisaat, Sukabumi, Jawa Barat Indonesia. Global Positioning System koordinat -6.9004,106.902, menghadap ke timur. Objek wisata yang terkenal di dekatnya Situgunung dan Selabintana di kaki gunung Gede Pangrango. Anda dapat menikmati berbagai layanan dan fasilitas seperti: hotel, ruang rapat, restoran, kolam renang, kegiatan di luar ruangan, jalan-jalan di perkebunan teh, flying fox, dan lain-lain

Wednesday, October 8, 2014

Recharge Dry Cell Non-rechargeable Battery With Adapter

A flat battery still can be used by charging it although it is non-rechargeable type. Make sure the battery is not leaking, and the voltage is not too low. Then we can recharge it to normal voltage.

This video shows how to recharge AAA dry cell non-rechargeable battery, voltage rating 1.5 volt. The charger is 12 volt 300 milliamperes AC to DC adapter. The adapter supplies just enough charging current to recharge AAA battery. If you are using bigger amperage adapter, you may need to put a series resistor in order to reduce charging current, this way the battery will not become very hot. In less then 1 minutes charging, battery voltage will rise up to 1.8 volt. Wait a while to let the voltage to go down to a normal 1.5 volt, then the recharged battery can be used normally.

Connect positive battery to positive wire of adapter, in the video it is red wire. And connect negative battery to negative wire of adapter (black wire). Stop charging when battery gets warm.

This AAA battery usually is used for TV remote, AC remote, clock, etc. New battery may last for years, while recharged battery may last only for a few weeks or months, but still can be recharged again for a few times. This recharging procedure is very helpful when you do not have time to leave home just to buy a small battery.

More info click here.


Baterai yang rendah tegangannya masih dapat digunakan dengan cara diisi-ulang (recharge) atau dicas meskipun baterai tersebut dari jenis yang tidak dapat dicas (non-rechargeable). Pastikan baterai tidak bocor, dan tegangannya tidak terlalu rendah. Kita bisa mengisi ulang kembali ke tegangan normal. 

Video ini menunjukkan cara untuk mengisi ulang baterai non-rechargeable AAA sel kering, tegangan normal 1,5 volt. Pengisinya adalah 12 volt 300 milliampere AC ke DC adaptor. Adaptor in mensuplai cukup arus untuk mengisi ulang baterai AAA. Jika Anda menggunakan adaptor dengan ampere lebih besar, Anda mungkin perlu memasang resistor serie untuk mengurangi arus pengisian, hal ini untuk mencegah baterai menjadi sangat panas. Dalam waktu kurang dari 1 menit pengisian, tegangan baterai akan naik hingga 1,8 volt. Tunggu beberapa saat untuk membiarkan tegangan turun ke 1,5 volt, maka baterai diisi ulang dapat digunakan kembali. 

Kutub positif baterai dihubungkan ke kabel positif dari adaptor, dalam video itu adalah kabel merah. Kutub negatif baterai dihubungkan ke kabel negatif adaptor (kabel hitam). Hentikan pengisian jika baterai menjadi hangat. 

Baterai AAA ini biasanya digunakan untuk remote TV, remote AC, jam, dan lain-lain. Baterai baru bisa dipakai selama bertahun-tahun, baterai yang diisi-ulang dapat bertahan hanya selama beberapa minggu atau bulan, tapi masih bisa diisi-ulang lagi sampai beberapa kali. Prosedur ini sangat membantu disaat Anda tidak sempat keluar rumah hanya untuk membeli baterai kecil.

Info lebih lanjut klik di sini.

Wednesday, September 10, 2014

Why ABS Warning Flash On After Wheel Bearing Replacement?

Wheel bearing in this video has a ring with magnetic poles (North-South) to create electric pulse when vehicle wheel is spinning. Magnetic ring is checked by attaching a metal plate, to find out which part of bearing contains magnetic force to pull that metal plate.

When replacing a wheel bearing with integrated magnetic ring, always make sure the direction in which the bearing is installed. The magnetic ring must be positioned close to ABS (Anti-lock Braking System) sensor.

In in this video, brown ring has magnets and must be positioned close to the ABS sensor.

See the attached photo of bearing installation, we can see brown ring is fitted to the direction to make it close to the ABS sensor. ABS sensor position is indicated by red arrow.

If the bearing was installed in wrong position, ABS will not work and the ABS warning will be light on continuously. But the vehicle brake system is still functioning normally so that the vehicle can still be operated, only ABS does not working. This happens because the ABS requires rotational speed data of each vehicle wheel. So if one wheel does not provide data, the ABS system will not working.

Wrong positioned bearing must be replaced with a new bearing. Because the old bearing will be damaged when dismantling.

After a new bearing is installed correctly. Then run the vehicle about 40 kmh (25 mph) in order to get rotational speed data for ABS of each wheel. ABS warning light will be turned off by itself.

Applicable to vehicle of year 2000 - now, such as: Toyota (Corona, Corolla, Camry, Celica, Vios, etc), Porsche, Honda (Acura, Accor, Integra, City, Civic, Jazz, CR-V, Odyssey etc), Mazda (3, 5, RX8, Tribute, etc), Suzuki (Grand Vitara, SX4, etc), Audi Volkswagen (VW: Golf, Jetta, etc), Ford (Ranger, Everest, Explorer, etc), Pontiac, Dodge, Jeep, Mercedes Benz, Jaguar, BMW, etc.


YouTube video: http://youtu.be/B6pGrqPiqhYhttp://youtu.be/B6pGrqPiqhY

Mengapa Lampu Peringatan ABS Menyala Setelah Bearing Roda Diganti?

Bearing / bantalan roda di video ini memiliki cincin berkutub magnet (Utara-Selatan) sehingga membuat pulsa ketika roda kendaraan berputar. Cincin yang bermagnet dideteksi dengan menempelkan pelat besi, untuk mengetahui bagian manakah dari bearing yang mempunyai gaya magnet yang menarik pelat besi tersebut. 

Jika mengganti bearing roda dengan cincin magnet terintegrasi, selalu pastikan arah di mana bantalan dipasang. Cincin magnet harus diposisikan dekat dengan sensor ABS (Anti-lock Braking System).

Dalam di video ini, cincin berwarna coklat bermagnet dan harus dipasang di dekat sensor ABS.

Lihat foto terlampir, dalam pemasangan bearing, terlihat ring berwarna coklat dipasang ke arah dimana ring coklat tersebut berdekatan dengan sensor ABS. Posisi sensor ABS ditunjukkan oleh panah merah.

Jika bearing salah posisi saat dipasang, maka system ABS tidak akan bekerja dan lampu peringatan ABS akan menyala terus-menerus. Tapi system rem kendaraan masih berfungsi normal sehingga kendaraan tetap dapat dioperasikan, hanya ABS nya saja yang tidak berfungsi. Hal ini terjadi karena system ABS membutuhkan data kecepatan putar dari tiap roda kendaraan. Jadi jika salah satu roda tidak memberikan data kecepatan putar, maka system ABS akan otomatis tidak berfungsi.

Bearing yang salah posisi harus dibongkar kembali dan harus diganti dengan bearing baru. Karena bearing yang lama pasti akan rusak saat pembongkaran.

Jika bearing yang baru sudah terpasang dengan benar. Lalu jalankan kendaraan sekitar 40 km/jam agar system ABS mendapat data kecepatan putar setiap roda. Selanjutnya lampu peringatan system ABS akan mati dengan sendirinya.

Monday, August 11, 2014

Small Electromagnet Transformer Can Lift 11 kg Weight

Transformer on this article modified to become an electromagnet that can lift 11 kg bucket of water, that is about equal to 24.25 pounds (lbs). And it still capable to lift heavier load, but I do not want to push it too hard.

Cheap electromagnet with fluorescent lamp ballast, read here.

Transformer that I use is a 12 volt 300 mA with a center tap (CT). Once the outer cover plate is removed, the iron core will be visible. A transformer core consists of strip iron plates shaped like 'I' letter, and iron plates shaped like 'E' letter.

Remove the iron plates one by one. At first it is rather difficult because of the iron plates glued with some sort of varnish or resin. Maybe you need to cut some plates with cutting pliers that usually used to cut the pin of electronic component. After 3-4 plates have been cut and pulled out, it will be easier to pull out other plates because there is a space a screwdriver to pry.

Then all 'E' metal plates are put back, so that transformer core will be seen as the photos below.

An iron rod will be attached to the bottom of transformer. When transformer is connected to power source,  'E' iron plates core will contain magnetic force to attract iron rod. The iron rod will replace the function of 'I' iron plates which has been removed.

Keep in mind that iron is more easily become ​​magnet than steel. Electromagnet with iron core has stronger magnetic force then with steel core. But iron is more easily corroded than steel, this is one reason why transformer iron core is coated anti corrosion material or immersed in lubricating oil.

Iron core is made from many pieces of metal plate, not a lump of solid iron. This is to reduce the effect of Eddy currents in the iron core which will generate heat and reduce efficiency. Eddy currents is the effect of induction, and they are swirling in the iron core. Iron core plates insulated from each other to cut off the Eddy current flow, this is one of the function of resin or varnish that coats iron core plates.

In a large electric grid transformer, lubricant also serves to cool the transformer. Not to reduce friction like it is usually in the machine with moving parts.

The following video shows the electromagnetic current is lifting 11 kilograms water in the bucket. Note the presence of a clicking sound when touching the iron rod touching electromagnet iron core, indicating strong magnetic attraction to the iron rod.


If you have trouble opening the video in this article, the video can also be viewed on YouTube at the following address:


Iron core 'E' plates are tied with two wires connected to a spring scale in order to measure the weight of lifted load. As the load is a bucket of water, the volume of water can be adjusted to obtain the maximum weight that can be lifted by the electromagnet.

Transformer is supplied with a voltage of 12 volts direct current (VDC) into both 12 volts taps. The use of direct current (DC) aims for a steady magnetic field, so it has no electromagnetic change to allow a stable pulling to iron rod. As shown in the photo, both 12 volts taps are soldered with yellow and blue wires. Center tap (CT) of the transformer is not used.

Transformer can be supplied at high voltage 220 volts taps. But it is rather difficult to get a steady 220 volts direct current. The generated magnetic field will be unstable or vibrating, as the effect of alternating current rectified by diode circuit to become direct current. It can be stabilized by a high voltage condenser, but usually there are still some voltage changes remain. Also the high voltage has a greater risk. So to be safe, I decided to only use low voltage to be supplied to the transformer.

The higher the voltage, the greater the current supplied to the transformer, and the stronger the magnetic force. But large current will lead to overheating, transformer could be shorted or even burnt.

If those 'I' iron plates are put back, then this electromagnet can be used again as a transformer, so I can still use it for other projects.

Sunday, July 13, 2014

Mengangkat Beban 11 kg Dengan Elektromagnet Dari Trafo Kecil

Transformer pada artikel ini dimodifikasi agar menjadi elektromagnet yang dapat mengangkat beban 11 kg ember yang berisi air. Sebetulnya masih bisa mengangkat beban lebih berat lagi, tapi saya tidak mau memaksakannya.

Untuk elektromagnet murah dari ballast lampu neon, lihat disini.

Trafo yang saya gunakan adalah 12 volt 300 mA dengan center tap (CT). Setelah pelat penutup luar dilepas, maka inti besi (iron core) trafo akan terlihat. Inti sebuah trafo terdiri dari pelat-pelat besi berbentuk lurus atau mirip huruf ‘I’, dan pelat-pelat besi berbentuk mirip huruf ‘E’.

Lepas pelat-pelat besi tersebut satu per satu. Pada awalnya memang agak sulit karena pelat-pelat besi tersebut direkat dengan semacam vernis atau resin. Mungkin anda perlu memotong beberapa pelat dengan tang gunting yang biasa digunakan untuk memotong kaki komponen elekronik. Setelah 3-4 pelat dipotong dan ditarik keluar hingga terlepas, maka akan mudah melepas pelat lainnya karena sudah ada ruang untuk mencongkel pelat dengan obeng minus (-).

Lalu pelat besi berbentuk ‘E’ dari inti trafo dipasang kembali, sehingga trafo akan terlihat sebagaimana foto di bawah.

Pada bagian bawah trafo nantinya akan ditempelkan batang besi. Saat trafo dialiri listrik maka pelat-pelat besi inti 'E' dari trafo akan mengandung gaya magnet dan menarik batang besi. Batang besi itu akan menggantikan fungsi pelat-pelat besi 'I' yang sudah dilepas.

Perlu diketahui bahwa besi lebih mudah dijadikan magnet dari pada baja. Sehingga elektromagnet dengan ini besi lebih kuat gaya magnetnya dari pada dengan ini baja. Tapi besi lebih mudah berkarat dari pada baja, inilah salah satu sebab maka inti besi trafo dilapisi dengan bahan antikarat atau direndam dalam minyak pelumas (olie). 

Inti besi dibuat dari potongan-potongan pelat besi, tidak sebongkah besi padat. Hal ini guna mengurangi efek arus Eddy pada inti besi yang menimbulkan panas dan mengurangi effisiensi. Arus Eddy adalah arus listrik akibat induksi elektromagnet pada inti besi, arus ini berputar-putar di dalam inti besi. Pelat-pelat inti besi diisolasi satu sama lain untuk memutus aliran arus Eddy, inilah salah satu fungsi dari resin atau vernis yang melapisi pelat-pelat inti besi trafo. 

Pada trafo yang besar seperti untuk jaringan listrik PLN, pelumas juga berfungsi untuk mendinginkan trafo. Bukan berfungsi untuk mengurangi gesekan seperti pada mesin-mesin dengan komponen yang bergerak.

Video berikut memperlihatkan saat elektromagnet ini mengangkat beban 11 kilogram air dalam ember. Perhatikan adanya suara klik saat elektromagnet menyentuh batang besi yang terdengar jelas, menandakan kuatnya gaya tarik magnet terhadap batang besi tersebut.


Jika kesulitan membuka video di artikel ini, video tersebut juga dapat dilihat di YouTube dengan alamat berikut:


Pelat-pelat besi 'E' diikat dengan dua kawat dan dihubungkan dengan timbangan pegas agar dapat diukur berat beban yang diangkat. Beban berupa ember yang berisi air, volume air dapat ditambah dan dikurangi agar didapat berat maximum yang dapat diangkat oleh trafo.

Trafo disuplai dengan tegangan 12 volt arus searah (VDC) pada kedua tap 12 volt. Penggunaan arus searah (Direct Current) bertujuan agar medan magnetnya stabil, tidak berubah-rubah sehingga elektromagnet 'memegang' batang besi dengan stabil. Sebagaimana terlihat pada foto, kedua tap 12 volt disolder dengan kabel kuning dan biru. Center tap (CT) dari trafo tidak dipakai. 

Bisa saja trafo disuplai pada bagian tegangan tingginya yaitu 220 volt. Tapi agak sulit mendapatkan tegangan tinggi 220 volt arus searah yang konstan. Medan magnet yang dihasilkan tidak stabil alias bergetar, sebagai effek dari tegangan 220 VAC yang disearahkan dengan rangkaian dioda menjadi VDC. Bisa saja tegangan tinggi arus searah tersebut distabilkan dengan kondensor tegangan tinggi, tapi biasanya tetap saja ada sedikit perubahan-perubahan tegangan. Juga tegangan tinggi mempunyai tingkat resiko yang lebih besar. Maka supaya aman, saya putuskan untuk hanya menggunakan tegangan rendah untuk disuplai ke trafo. 

Semakin tinggi tegangan, maka semakin besar arus yang disuplai ke trafo, sehingga semakin kuat gaya magnetnya. Tapi arus yang besar dapat membuat trafo terlalu panas (overheating) sehingga bisa putus atau bahkan terbakar.

Jika pelat-pelat besi 'I' dipasang kembali maka trafo bisa dipergunakan kembali sebagai transformator, jadi masih dapat saya manfaatkan untuk proyek lainnya.

Sunday, June 15, 2014

Wiring Diagram For Aftermarket Tachometer

A tachometer is gauge to measure mechanical speed in units of RPM (Revolutions Per Minute or Rotations Per Minute). On vehicle, tachometer is measuring engine speed. More about the function of tachometer can be read in the article "What Is Tachometer Function On Vehicle?" .

Aftermarket tachometer wiring is oftenly confusing as it has no information from the manufacturer. Seller also doesn’t know how to connect wiring. While mechanic rely on trial and error method. As mechanic doesn’t record and doesn’t understand the test procedure, mechanic often tries same wrong combinations over and over, and making high risk of damaging the tachometer.

For ‘Garcons’ analog tachometer as the above photo, wiring connections are as below:

          Yellow wire is connected to switch ignition ON position, to connect with positive ( + ).

          Green wire to negative ( - ) or body.

           Black wire for signal, connected to negative of coil, this wire allows tacho to 'sense' engine speed.

This analog tachometer is suitable for motorcycles with one cylinder four-stroke (four-cycle) engine, such as Honda bike and mostly motorcycle engine today.

If it is used on a motorcycle with one cylinder two-stroke engine, this tachometer will read twice the actual engine speed (RPM). The two-stroke one cylinder engine is like the one used on Vespa scooter.

And if it is installed on a motorbike with 4 cylinders four-stroke engine with only 1 coil for all cylinders, then the reading will be 4x times higher. But if that engine has four coils, or one coil for each cylinder, then the reading will be accurate. Because the tachometer reading is based on only 1 cylinder.

Coil positive pin is connected to the battery via ignition switch ON position, so coil positive pin can be used as current source for tachometer.

If the electric current supplied by ignition switch ON position is very limited, such as the ignition wire is small, it can be connected to ACC (accesories) position of the ignition switch if available. Ussually ACC position is just right after the LOCK position or OFF.

Two small wires of red and black tied together are for tachometer lighting.

Check with multitester if one of those light wires is connected to tachometer body, for example: if black wire is connected to body then the black wire is the ground or negative, and of course the red wire is positive and will be connected to vehicle light switch.

If none of those black and red wire are connected to tachometer body, as polarity is not an issue with incandescent lamp, you may decide which one the positive wire to connect to the vehicle light switch. And other wire is connected to the vehicle body as a ground or negative .

If your tachometer wiring has different color code, then we use mathematical permutation method: we have three wires to be connected with 3 components. First, we need to find the number of combination possibilities. According to the permutation formula will be obtained:

           3 factorial = 3 x 2 x 1 = 6 combination possibilities.

Then we create a list of 6 combinations of wiring connection: black, green , and yellow wire will be connected to :
           negative ( - ) or body or ground
           positive ( + ) as a power source for the tachometer to work
           tachometer signal or coil in order to measure engine speed (RPM).

Please see the table below, the negative ( - ) or ground is always connected first and used as the starting point when using the table to check connections. Because wrong connetion to ground has a very small risk to damage the tachometer.

Signal wire is always the last one to connect to coil negative pin. Because coil induction produces high voltage that can damage the tachometer. It needs only one wire connected to coil and another wire connected to your body, high voltage current will flow from coil to tachometer and to your body as ground. Thus it has high risk to damage tachometer.

If your tachometer has different color code wires, then the table can be modified to suit your wiring color code. Suppose you have a tachometer with black, red and green wires, no yellow wire. So replace yellow color in the table with red color, then the table can be used.

How to use a permutation table:

Start the engine, let it runs stationary. In order to reduce the risk to damage tachometer, always connect the negative ( - ) wire to ground first. Then connect positive ( + ) wire to ignition switch. Connect the last wire which is assumed as signal to negative pin of coil, remove this wire immediately if tachometer is not working. Especially when handling the wire which is connected to coil, use insulated tool, because coil induction voltage can shock you, though not fatal.

See the first row on the table, connect the black wire to the body or to negative ( - ). Then connect yellow wire to positive ( + ) from battery or ignition switch. And the last wire which is green wire to be connected to coil negative pin. See if the tachometer needle moves. If tachometer does not work then immediately disconnect the green and yellow wire. don't leave it for too long because it can damage the tachometer . Mark column 'Check' at row 1 on the table with X sign, which states this wiring is wrong, so we will not reconnect it anymore.

Continue to second row, connect the black wire to the body or negative ( - ). Connect green wire to positive ( + ) from battery or ignition switch. And connect yellow to coil negative pin. Check if the tachometer needle moves, if tachometer does not working then immediately disconnect the yellow and green wires.

Continue to row 3, and so on until we found the correct wiring connections. If we have already found correct connections, for example, row number 4 is the correct one. Then no need to proceed to number 5 and 6. Because there is only one correct way of wiring, we can conclude that other ways are wrong .

Permutations mathematic as above can also be used to find the combination of component wiring other than the tachometer.

For more details, the following schematic illustrates three main wirings of a tachometer.

As on the schematic, the positive wire from the tachometer is connected to the ignition switch. Signal wire connects to a line between coil negative and contact point. Contact point is replaced by igniter for vehicle with electronic ignition systems. Tachometer negative wire is connected to the vehicle body.

CAUTION: Do not connect a wire to coil output. There is a large diameter wire with thick insulation connected to coil output, this big wire connects to spark plug. High-voltage (>10,000 volts) of coil output will damage electronic devices.

To keep the above schematic simple yet easy to read and to understand, tachometer light wiring is not included. Light wiring is simple and easy to understand, even without schematic.

Coil has same function as a transformer, in the ignition system coil is used to rise the voltage.  Trafo and coil only can increase or decrease voltage if its magetic field is changing. To change magnetic field, trafo is supplied with alternating current (AC), or with pulsating direct current (DC). Coil works with Ruhmkorff inductor principle, with pulsating direct current  to increase voltage. Contact point serves to cut off electric current from coil primary winding to the ground, magnetic field will collapse and induce high voltage to the secondary winding or coil output. The high voltage output of coil can jump over spark plug gap, causing electrical spark. Spark will ignite gas to burn, and create pressure to push the piston to produce mechanical power. In electronic systems, contact point is replaced by igniter. Because contact point / igniter has function like On-Off switch, the pulsed voltage is recognized as a signal by tachometer to measure engine speed.

Sunday, May 18, 2014

Cara Menyambung Kabel RPM Meter (Tachometer)

Dapatkan uang Rp 500 ribu dari kartu Citibank, klik di sini.

Tachometer berfungsi untuk mengukur putaran engine dalam satuan RPM (Rotation Per Minute, putaran per menit). Lebih lanjut tentang fungsi RPM dapat dibaca di artikel "Apakah Fungsi Tachometer pada Kendaraan?".

Di pasaran, tachometer sering juga disebut RPM meter atau RPM saja. Penyambungan kabel tachometer sering menemui kendala karena tidak ada keterangan dari pabrikan. Penjual juga tidak tahu cara menyambung kable. Sedangkan mekanik hanya mengandalkan cara coba-coba, karena tidak mencatat dan tidak mengerti prosedur test, mekanik sering mencoba kombinasi yang salah dan sama berulang-ulang, yang beresiko merusak tachometer.

Lihat video tentang tiga origami model kapal berlayar bersamaan tanpa listrik, tanpa bahan bakar, tanpa tiupan angin. Kapal-kapal berwarna-warni tersebut berlayar cepat bersama-sama dengan bantuan reaksi kimia dari molekul-molekul air. Kapal terbuat dari material yang mudah ditemukan di rumah tangga, seperti: gabus (polystyrene), lembaran plastik, yang biasanya disia-siakan menjadi polusi tanah. Berbagai model kapal dapat dengan mudah dirakit. Sangat baik untuk belajar dan praktek mendesain kapal sederhana. Sehingga kapal ini dapat dijadikan mainan edukatif (educational toy) yang mendidik dan merangsang kreatifitas.                    

Untuk tachometer analog (dengan jarum) merk Garcons sebagaimana foto diatas, penyambungan kabelnya adalah:

Kabel kuning adalah tegangan positif disambung ke kunci kontak posisi ON.
Kabel hijau ke negatif atau body.
Kabel hitam untuk sensor putaran atau sinyal, disambung ke coil negatif, agar tachometer dapat ‘merasakan’ putaran engine.

Tachometer tersebut cocok untuk sepeda motor dengan engine 1 silinder 4 tak (4 siklus), seperti Honda dan umumnya sepeda motor saat ini.

Jika digunakan pada sepeda motor dengan engine 2 tak (2 siklus) dengan 1 silinder, maka RPM yang terbaca akan dua kali lipat RPM sebenarnya. Contoh engine 2 tak dengan 1 silinder adalah pada skuter Vespa dan Yamaha RX King.

Jika dipasang pada engine 4 silinder 4 tak dengan 1 coil, maka RPM yang terbaca akan 4 kali lipat. Tapi jika setiap silinder dari engine tersebut mempunyai 1 coil, maka RPM yang terbaca akan akurat. Karena tachometer hanya berpatokan pada 1 silinder.

Positif koil adalah tegangan positif dari aki yang melalui kunci kontak pada posisi ON, jadi positif koil bisa dijadikan sumber arus bagi RPM. 

Jika arus listrik yang suplai dari posisi ON kunci kontak sangat terbatas, misalnya karena kabel ON dari kunci kontak berukuran kecil, maka bisa disambung pada posisi kunci kontak ACC (accesories) jika ada. Posisi ACC adalah posisi kunci kontak saat diputar persis setelah posisi LOCK (kunci setang) atau OFF.

Dua kabel kecil berwarna merah dan hitam yang diikat menjadi satu adalah kabel untuk lampu penerangan tachometer.

Check dengan multitester apakah salah satu kabel lampu terkoneksi ke body tachometer, misalnya jika kabel hitam terkoneksi ke body maka kabel hitam adalah ground atau negatif, dan dapat dipastikan bahwa kabel merah adalah positif yang akan disambung ke switch (saklar) lampu kendaraan.

Jika tidak ada dari kedua kabel hitam dan merah tersebut yang terhubung ke body tachometer. Karena kabel untuk lampu pijar bisa dipasang bolak-balik, maka boleh menentukan sendiri kabel mana untuk positif yang disambung ke switch lampu kendaraan. Dan kabel lainya disambung ke body kendaraan sebagai ground atau negatif.

Jika ternyata kabel tachometer tidak sesuai dengan kode warna sebagaimana diatas, maka harus dicari dengan metoda matematika permutasi berikut: Ada tiga buah kabel yang harus dihubungkan dengan 3 buah komponen. Perlu dicari dulu jumlah kemungkinan kombinasi penyambungan. Menurut rumus permutasi akan didapat:

                     3 faktorial =   3 x 2 x 1 = 6 kemungkinan penyambungan.

Kemudian kita buat tabel penyambungan kabel dengan 6 kemungkinan, dengan warna kabel hitam, hijau, kuning, yang akan disambungkan ke:
                       negatif (-) atau body atau ground
                       positif (+) sebagai sumber daya bagi tachometer agar dapat bekerja
                      sinyal atau coil agar tachometer dapat mengukur putaran engine (RPM).

Perhatikan tabel di bawah, negatif (-) atau body selalu disambung lebih dulu dan dijadikan acuan awal saat menggunakan tabel. Karena jika salah sambung dengan body, resiko kerusakan tachometer sangat kecil.

Kabel sinyal atau coil selalu disambung paling akhir, karena coil menghasilkan tegangan tinggi induksi yang dapat merusak tachometer walau hanya satu kabel yang dihubungkan ke coil dan kabel lainnya menyentuh badan anda sehingga menjadi ground. Badan anda sudah cukup untuk mengalirkan tegangan tinggi dari coil melalui tachometer dan dapat merusak tachometer jika salah kabel.

Jika tachometer anda mempunyai kabel dengan warna yang berbeda dengan tabel, maka tabel dapat dimodifikasi agar sesuai dengan tachometer anda. Misal tachometer anda mempunyai kabel hitam, merah dan hijau, tidak ada kabel kuning. Maka ganti warna kuning pada tabel dengan warna merah, lalu tabel dapat dipergunakan.

Cara menggunakan tabel permutasi:

Start engine, biarkan dalam keadaan stasioner (tidak di gas). Agar mengurangi resiko yang dapat merusak tachometer, selalu sambung kabel yang diduga sebagai negatif (-) ke body terlebih dulu. Baru kemudian tempelkan kabel yang diprediksi sebagai positif dan sinyal (coil), cukup ditempelkan saja agar dapat segera dilepas jika salah agar tidak merusak tachometer. Khusus untuk kabel yang dihubungkan ke coil, gunakan alat yang terisolasi atau gunakan sarung tangan, karena tegangan induksi dari coil dapat membuat anda terkejut walau tidak fatal.

Lihat baris nomor 1, sambungkan kabel hitam ke body atau negatif (-). Lalu tempelkan kabel kuning ke positif aki, dan kabel hijau ditempelkan ke negatif coil. Lihat apakah jarum tachometer bergerak, jika tidak maka segera lepas kabel hijau dan kuning, jangan dibiarkan terlalu lama menempel karena karena dapat merusak tachometer. Tandai tabel pada baris 1 dan kolom Check dengan tanda kali (X) yang menyatakan cara pemasangan kabel tersebut salah, agar kita tidak mengulangi lagi cara tersebut.

Lanjutkan dengan baris nomor 2, sambungkan kabel hitam ke body atau negatif (-). Lalu tempelkan kabel hijau ke positif aki, dan kabel kuning ditempelkan ke negatif coil. Lihat apakan jarum tachometer bergerak, jika tidak maka segera lepas kabel hijau dan kabel kuning agar tachometer tidak rusak.

Lanjutkan ke baris 3, dan seterusnya sampai ditemukan pemasangan yang benar. Jika sudah ketemu, misalnya cara pemasangan nomor 4 adalah yang benar, maka tidak perlu melanjutkan ke nomor 5 dan 6, karena hanya ada satu cara pemasangan kabel yang benar, cara lainya dapat dipastikan adalah salah.

Matematika permutasi seperti diatas dapat juga dipakai untuk mencari kombinasi kabel dari komponen selain tachometer.

Untuk lebih jelasnya, skema berikut menggambarkan penyambungan 3 kabel utama dari tachometer.

Jelas terlihat bahwa kabel positif dari tachometer disambung ke kunci kontak (ignition switch). Kabel signal ke negatif coil sebelum platina (contact point) atau sebelum ignitor untuk kendaraan dengan sistem pengapian elektronik. Dan kabel negatif tachometer tersambung ke body kendaraan.

PERHATIAN: jangan menyambung kabel pada output coil. Pada output coil terdapat kabel yang berdiameter besar dengan isolasi yang tebal. Kabel output coil mempunyai ujung yang tersambung ke busi (spark plug) dan bertegangan tinggi (>10.000 volt), yang dapat merusak perangkat elektronik yang dilalui arus listrik bertegangan tinggi tersebut.

Sedangkan kabel untuk lampu tachometer sengaja tidak digambarkan karena biasanya tidak terlalu membingungkan. Hal ini untuk menjaga agar skema diatas tampak sederhana, mudah dibaca dan mudah dimengerti.

Fungsi coil sama dengan fungsi transformator, pada sistem pengapian digunakan untuk menaikkan tegangan. Trafo atau coil hanya dapat bekerja menaikkan atau menurunkan tegangan jika medan magnetnnya berubah-rubah, tidak statis. Perubahan medan magnet dapat dilakukan dengan arus bolak-balik (AC), atau dengan arus searah (DC) yang terputus-putus (berdenyut). Coil bekerja dengan prinsip induktor Ruhmkorff , dimana arus searah dibuat berdenyut agar coil dapat menaikkan tegangan. Platina (contact point) berfungsi untuk memutus arus dari kumparan primer coil ke body (ground), sehingga medan magnet coil akan runtuh dan menginduksikan listrik tegangan tinggi ke kumparan sekunder atau output coil. Tegangan tinggi output dari coil dapat melompati celah pada busi, sehingga menimbulkan percikan bunga api listrik di celah busi. Percikan api akan membuat gas terbakar, menimbulkan tekanan, dan mendorong piston sehingga menghasilkan daya mekanis. Pada sistem elektronik, platina digantikan oleh igniter. Karena platina / iginiter berfungsi mirip saklar On-Off, maka denyut tegangannya menjadi signal bagi tachometer untuk mengukur kecepatan putar engine.

Tuesday, April 22, 2014

Adjustable High Power 2200 Watts Twinkle Light

One of the audience was asking about big power twinkle light flasher with a voltage of 220 VAC. So in this article I discuss about modification of the previous flasher circuit for greater power up to 2200 watts, or 2.2 kilowatts.

There are two type of flasher discussed in this article, namely Simple Flasher and Flasher with SCR.

Before discussing a more complicated schematic, it is better if we discuss first about the simple flasher circuit which consists of 5 components beside the lamp, as the following schematic.

DR = rectifier diode 1N4007, which converts alternating current (AC) to direct current (DC) to be supplied to relay coil.

S = relay with 24 volts coil voltage, and current of 10 amperes at 250 VAC, so it can turn on 2200 watts bulbs at a voltage of 220 VAC. The brand I use is 'MASSUSE' with type 'ME-15H'. From the test results, it has been known that the relay can be activated (On) with coil voltages as low as 15 volts and current of 10 milli amperes (0.010 A). This relay has a 5 pins with SPDT ( Single Pole Double Throw ) type, therefore the current can flow when the coil is off, and also current can flow through different pin when coil is activated. With the SPDT relay this simple circuit can be used to control two lights that flash alternately (flip flop). See photos below relay.

B is lamp and connected to relay pin so that it will turns on when the relay is active. When relay is active, the relay coil does not supplied by 220 VAC grid, but relay coil is supplied by condenser CS. When condenser is empty then the relay will be turned off so the lamp B also turned of. When relay is not activated (Off), the relay connects 220 VAC grid to condenser to recharge it, so then the cycle continues. That is why that relay must have two pins for current direction (SPDT).

If using automotive relays, up to 30 amps current can be transmitted, so a load with power around 6600 watts can be connected. But automotive relay is rather difficult to be mounted on to PCB (Printed Circuit Board), because it's connectors are big. Automotive relays are usually expensive, and mostly they are Single Pole Single Throw (SPST) type, with only one position for current flow, instead of double position like SPDT. Automotive relay coil also consumes relatively large current and thus require a resistor coil (RS) with greater power and more expensive. That is why I chose 'MASSUSE' relay when designing this circuit.

DS = 24 volts zener diode with a power of about 1 watt, this zener limits the voltage at relay coil to only as high as 24 volts. Also to short high voltage (spike) which reaches thousands of volts as produced by induction of the relay when it's coil turns to off right after activated. Although spike is happened in a very short time and with very weak current, spike can cause fatal damage to other components, such as SCR, transistor, IC, and others. We can see in the above photo zener diode has light blue colour. Note that zener diode pins installation is in reverse direction of a conventional diode and SCR .

RS = 5600 ohms resistor (5K6) with 5 watts power. This resistor limits current supplied to relay coil. With the value of 5K6 will make voltage on the relay coil to about 25-26 volts. That voltage (25-26 volts) will be stabilized by the zener diode DS to 24 volts maximum. This resistor should be large because the power is supplied by 220 VAC from grid. Small power resistor will be overheating. If you are using a relay with different current consumption for it's coil, then this RS resistor should be adjusted. If you need a relay with greater current consumption, then the RS should be lower with increased power. Vice versa, if you need a relay with smaller current to activate it's coil, then the RS resistance value is increased and wattage may be lowered. So in this circuit design, a low voltage relay coil can work safely although supplied by a high voltage grid, because the coil is protected by resistor (RS) and zener diode (DS).

CS = 100 microfarads condenser with a maximum voltage of 50 volts. Condenser in this simple flasher circuit serves as an accumulator or a battery to activate the relay coil. This condenser will determine twinkle frequency. From the test results a value of 100 microfarads will make about 3 hertzs twinkle frequency, or 3 flashes per second. When using 470 microfarads condenser then twinkle frequency is about 3/5 hertzs or 3 flashes every 5 seconds. Positive pin of condenser is connected to diode (DR), negative pin of condenser is connected to resistor (RS). In the photo above condenser CS is coated with dark blue plastic.

This simple flasher circuit is easy and cheap to assemble, but unfortunately it is difficult to tune twinkling frequency. As it needs to replace condenser (CS) to set the frequency. If using a relay that has a 220 volts coil voltage then the circuit will be much simpler, but it is usually expensive.

Click here to see a video of a homemade science toy submarine in action. The submarine can dives, hovers, re-surfaces and moves forward, without battery / electric power. The submarine is made of household items such as: plastic sheet, polystyrene, rubber band, nut. Those items are usually wasted, useless, and become pollution. But now we can make a beautiful working submarine with those materials. This submarine or U-boat and can be played safely in a bucket of water, bathtub,  swimming pool, etc.

Now let's put the relay in series with SCR which is discussed in the article "Adjustable Twinkle Light 200 Watts 220 VAC Schematic".

Please concentrate to the top of the above schematic, some of the components are already described and they are same with simple flasher components described at the beginning of this article .

CS = 4.7 microfarads condenser with a maximum voltage of 50 volts, this condenser is different to condenser on simple flasher circuit. On this circuit, this condenser does not set twinkle frequency. Condenser in this circuit stabilizes current flow to activate the relay coil so the relay does not vibrate excessively at 50-60 hertz when it is must be activated (On) steadily. As we know the relay coil is activated by an alternating current (VAC) 50-60 hertz which is rectified by the diode, so the direct current produced is in half-wave pulse that can make relay vibration. From the test results, condenser value of 4.7 microfarads is sufficient to stabilize the relay when activated, the biggest value that I've tried was about 22 microfarads. If using too big condenser, then the relay will always activated or always On, even when the SCR has been turned off to cut the current to turn off lamp. Condenser positive and negative pins must be installed properly. Positive condenser pin is connected to the 220 VAC power grid, the negative pin is connected to resistor (RS).

Note how to connect relay to lamp and to power source. One of lamp wire is connected to relay output pin, other relay pin is connected directly to the power grid 220 VAC. Lamp is protected by a fuse (FB). Lamp fuse (FB) is big and must be in accordance with bulb current.

The other fuse (F) only protects low-power components, does not protect the lamp, so only use a small current fuse about 0.5 amperes. Thus if there is a failure in the circuit, the fuse can be broken off immediately to prevent further damage, or even fatal accident.

As the relay is SPDT type, so we can arrange 2 lamps to form flip-flop twinkle light, those two lamps turn On and turn Off alternately. See below schematic.

Each of those two lamps of flip-flop arrangement is connected to different relay output pin. So the relay will supply current to those two lamps alternately. Total lamps power for flip-flop arrangement should be reduced to about 1/4 maximum power of relay capability, or about 500 watts. Because relay contact points have a little time to rest to reduce its temperature.

The values ​​of some other components and how to set twinkling frequency can be read in the article "Adjustable Twinkle Light 200 Watts 220 VAC Schematic".

CAUTION: The entire circuit is connected directly to the high voltage grid, do not touch the circuit when connected to the power grid, use only well insulated equipment and tooling.